Applications of Nambu Mechanics to Systems of Hydrodynamical Type II

نویسنده

  • Partha GUHA
چکیده

In this paper we further investigate some applications of Nambu mechanics in hydrodynamical systems. Using the Euler equations for a rotating rigid body Névir and Blender [J. Phys. A 26 (1993), L1189–L1193] had demonstrated the connection between Nambu mechanics and noncanonical Hamiltonian mechanics. Nambu mechanics is extended to incompressible ideal hydrodynamical fields using energy and helicity in three dimensional (enstrophy in two dimensional). In this paper we discuss the Lax representation of systems of Névir-Blender type. We also formulate the three dimensional Euler equations of incompressible fluid in terms of Nambu-Poisson geometry. We discuss their Lax representation. We also briefly discuss the Lax representation of ideal incompressible magnetohydrodynamics equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volume Preserving Multidimensional Integrable Systems and Nambu–Poisson Geometry

In this paper we study generalized classes of volume preserving multidimensional integrable systems via Nambu–Poisson mechanics. These integrable systems belong to the same class of dispersionless KP type equation. Hence they bear a close resemblance to the self dual Einstein equation. All these dispersionless KP and dToda type equations can be studied via twistor geometry, by using the method ...

متن کامل

Deformation Quantization, Superintegrability, and Nambu Mechanics

Phase Space is the framework best suited for quantizing superintegrable systems—systems with more conserved quantities than degrees of freedom. In this quantization method, the symmetry algebras of the hamiltonian invariants are preserved most naturally. We illustrate the power and simplicity of the method through new applications to nonlinear σ-models, specifically for Chiral Models and de Sit...

متن کامل

Direct Hamiltonization for Nambu Systems

The direct hamiltonization procedure applied to Nambu mechanical systems proves that the Nambu mechanics is an usual mechanics described by only one Hamiltonian. Thus a particular case of Hamiltonian mechanics. It is also proved that any dynamical system described by the equation ~̇r = ~ A(~r) is a Nambu system.

متن کامل

Nambu Dynamics, Deformation Quantization, and Superintegrability

Phase space is a framework ideally suited for quantizing superintegrable systems through the use of deformation methods, as illustrated here by applications to de Sitter and chiral particles. Within this framework, Nambu brackets elegantly incorporate the additional quantum invariants of such models. New results are presented for the non-Abelian quantization of these brackets.

متن کامل

Deformation Quantization of Superintegrable Systems and Nambu Mechanics

Phase Space is the framework best suited for quantizing superintegrable systems, naturally preserving the symmetry algebras of the respective hamiltonian invariants. The power and simplicity of the method is fully illustrated through new applications to nonlinear σ-models, specifically for de Sitter N -spheres and Chiral Models, where the symmetric quantum hamiltonians amount to compact and ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004